

wiss Tropical Institute

nstitut Tropical Suisse

Air Pollution

Guy Hutton, PhD

Swiss Centre for International Health, Swiss Tropical Institute Basel, Switzerland

DSI Development Solutions International guy.hutton@dev-solint.com

Presentation Overview

• The problem

nstitut

- The range of solutions
- The costs of selected solutions
- The benefits of selected solutions
- Benefit-cost ratios
- Interpretation of results
- Issues in scaling up the solutions

viss Tropical Institute stitut Tropical Suiss

Institut Tr

The problem: introduction

- Suspended particulate matter (dust, soot, fumes, mist, smoke, liquid droplets), gaseous pollutants (lead, SO₂, NO₂, O₃, CO), odours
- Transportation, energy generation, industrial operations, processing industries, domestic cooking & heating
- Air pollution impacts
 - Human and animal health (respiratory, heart)
 - Buildings and materials
 - Agricultural production
 - > Biodiversity
 - Visibility
 - Greenhouse gases

cal Institute pical Suisse

The problem: causes

Indoor air

- Household use of biomass for cooking and heating
 - > Open fires or traditional stoves
 - Conditions of low combustion efficiency, poor ventilation
- Problem more in rural areas (biomass)
 - Also other "modern" indoor air pollutants (e.g. sickbuilding syndrome)
 - And environmental tobacco smoke, exposure to chemicals or gases in indoor workplaces
- "Rule of 1000": pollutant released indoors is 1000 times more likely to reach people's lungs than one released outdoors

ical Institute opical Suiss

nstitut

The problem: causes

Outdoor air

- Combustion of petroleum products or coal
 - > Motor vehicles, industry, power generation
 - Mainly around cities and industrial areas
- Associated with advancing economic development
- Implies also a corresponding underdevelopment
 - Affording technologies that reduce pollution
 - Subsidizing public transport schemes
 - Enforcing regulations

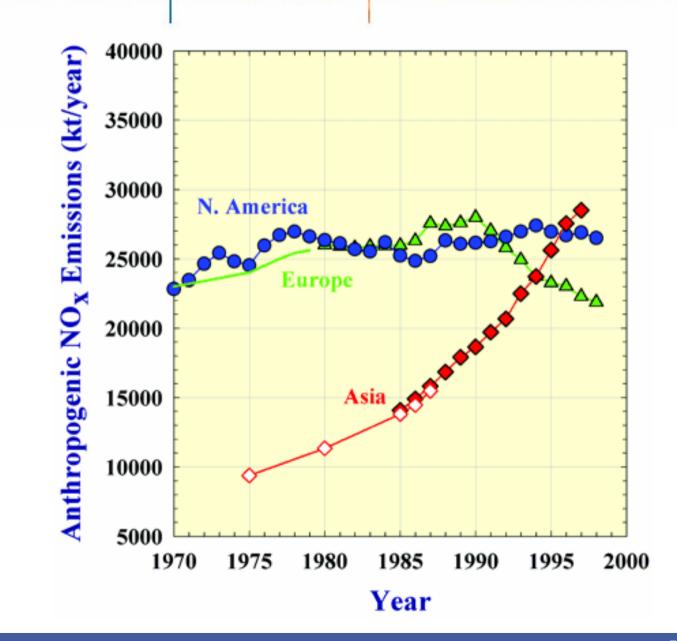
HILALO

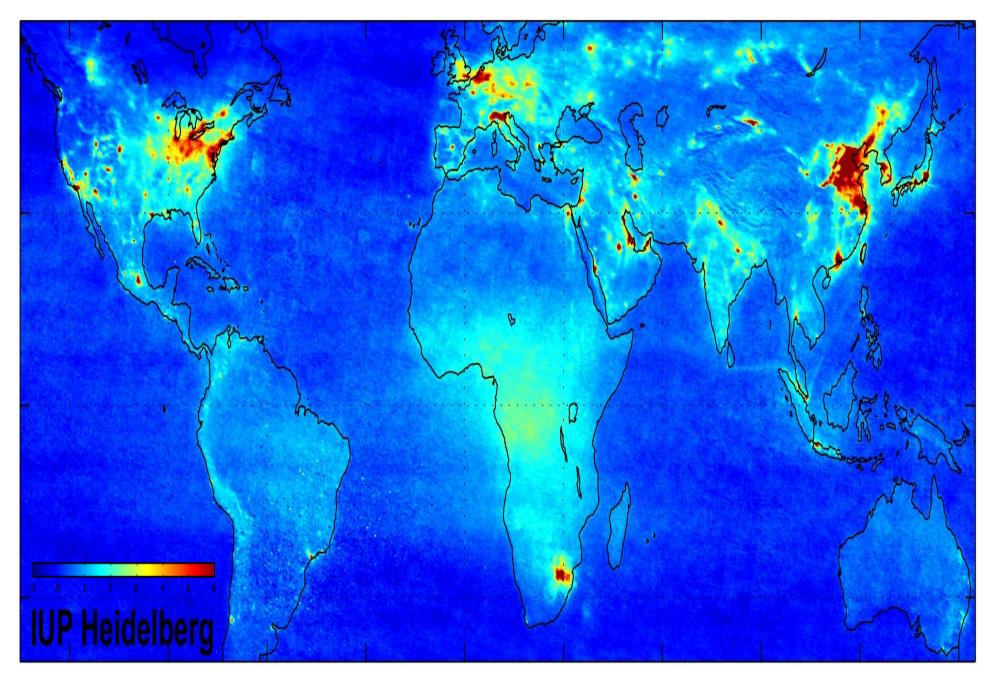
The problem: the numbers

Indoor air

- > 3 billion people depend on solid fuels
- In rural areas, <u>unimproved</u> domestic fuels account for 66% (WPR) to >85% households (SSA & SEA)
- > 1.5 million annual deaths attributed to solid fuel use within the home

Outdoor air


- 1.5 billion pop. breathe air > WHO standard
- 800,000 annual deaths
 65% in developing Asia
- 0.6% 1.4% disease burden in LDCs
- Lead pollution contributes further 0.9%
- Omits air pollution from forest fires and industrial or nuclear accidents


HELVEY

Swiss Tropical Institute Institut Tropical Suisse Schweizerisches Tropenins

schweizerisches Tropeninstitut

Akimoto H Global Air Quality and Pollution Science, 2003

Global mean tropospheric NO2 vertical column density (VCD) 01/2003 – 06/2004. University of Heidelberg.

ELVE

Air pollution in the MDGs

- Health
- Environmental sustainability
- Gender equality

astitut

Overall poverty rates

goals 4, 5 and 6

- goal 7
- goal 3
- goal 1

Indoor Air

Suisse

nstitut

ss Tropical Institute opical

The solutions: indoor air

- Reducing the source of pollution
 - Improved cooking devices
 - Cleaner burning fuel
 - Reduced need for fire
- Altering the living environment
 - Ventilation
 - Kitchen design
 - Stove placement
- Alter user behaviour
 - > Fuel drying
 - Stove and chimney maintenance
 - Use of pot lids to conserve heat
 - Keep children away from the smoke

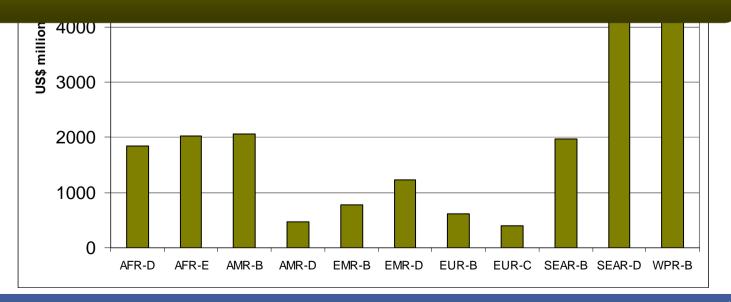
Costs and benfits of the solution

- Few cost-benefit studies of indoor air pollution interventions
- One study by WHO evaluated global and regional costs and benefits of selected indoor air pollution interventions:
 - Solid fuels to LPG or ethanol
 - Improved stoves

All evaluated for MDG target and universal access, also with a separate pro-poor analysis This presentation shows the MDG analysis

A ELVEN

Swiss Tropical Institute Institut Tropical Suisse Schweizerisches Tropenins


institut

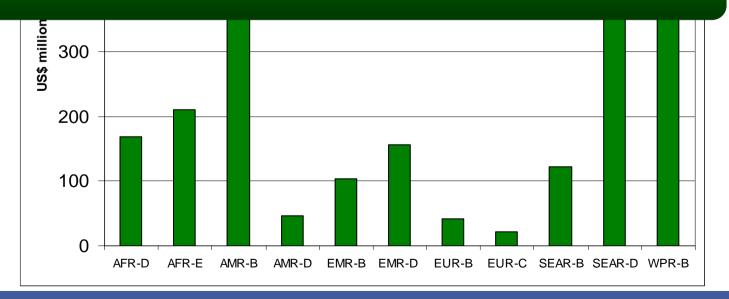
Total costs of solutions (US\$ m)

LPG

Global annual cost = 23.6 billion US\$

AELVER C

M D.V. Swiss Tropical Institute Institut Tropical Suisse Schweizerisches Tropenin


nstitut

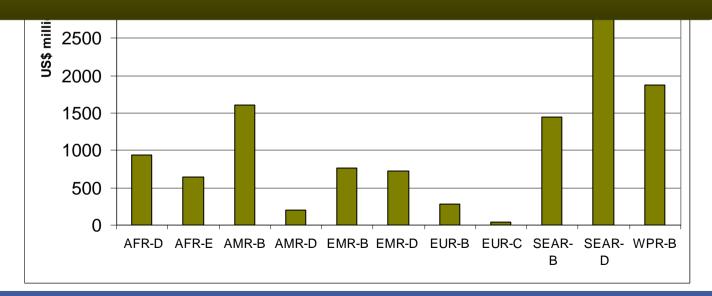
Total costs of solutions (US\$ m)

Stove

Global annual cost = 2.3 billion US\$

AELVEN A

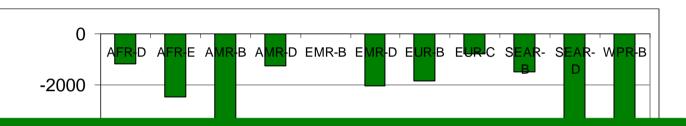
Swiss Tropical Institute Institut Tropical Suisse Schweizerisches Tropenir


institut

Net costs of solutions (US\$ m)

LPG

Global annual net cost = 13.1 billion US\$



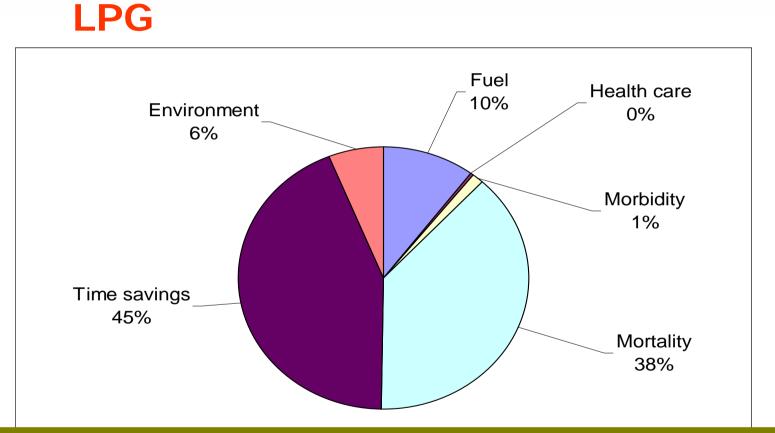
Swiss Tropical Institute Institut Tropical Suisse Schweizerisches Tropenin

institut

Net costs of solutions (US\$ m)

Stove

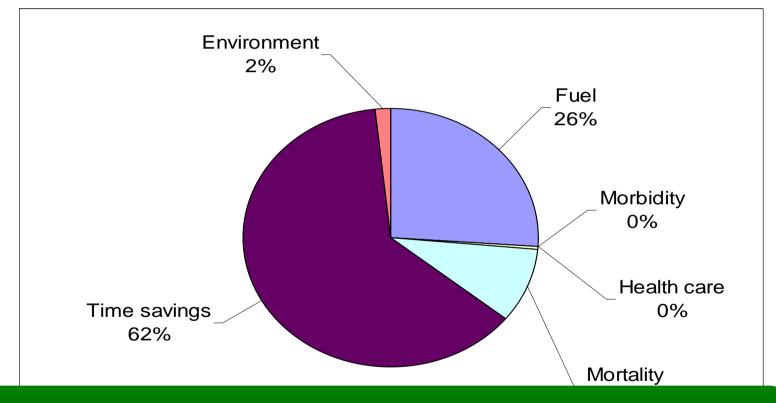
Global annual net cost = -34.4 billion US\$



Swiss Tropical Institute Institut Tropical Suisse Schweizerisches Tropenin

astitut

Total benefits of solutions (%)

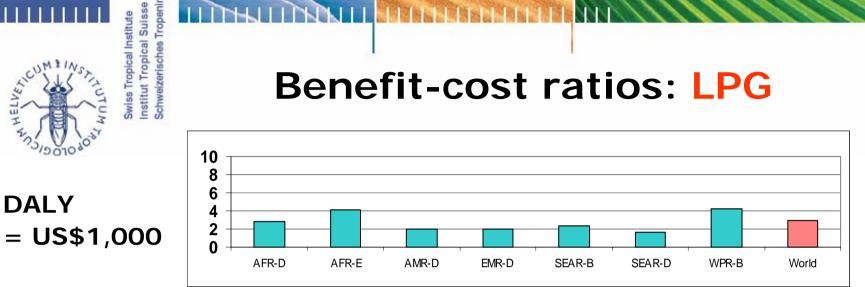

Global annual benefit = 101 billion US\$

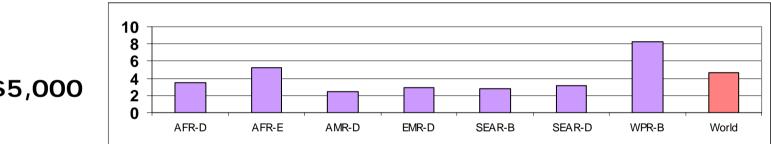
Swiss Tropical Institute Institut Tropical Suisse Schweizerisches Tropenin

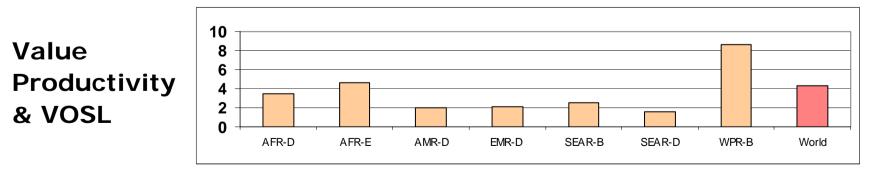
astitut

Total benefits of solutions (%) Stove

Global annual benefit = 141 billion US\$




ninstitut



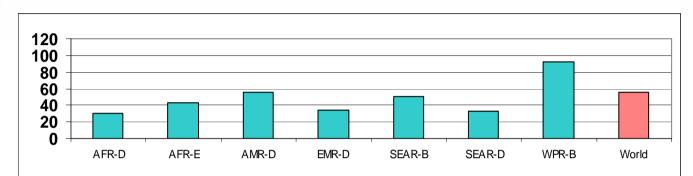
DALY

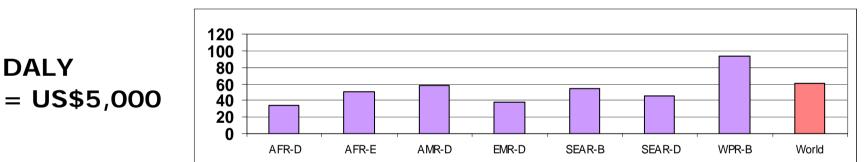
Benefit-cost ratios: LPG

DALY

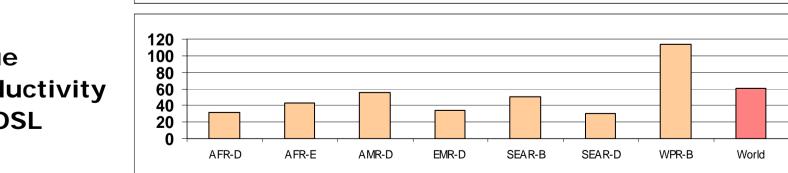
= US\$5,000

institut



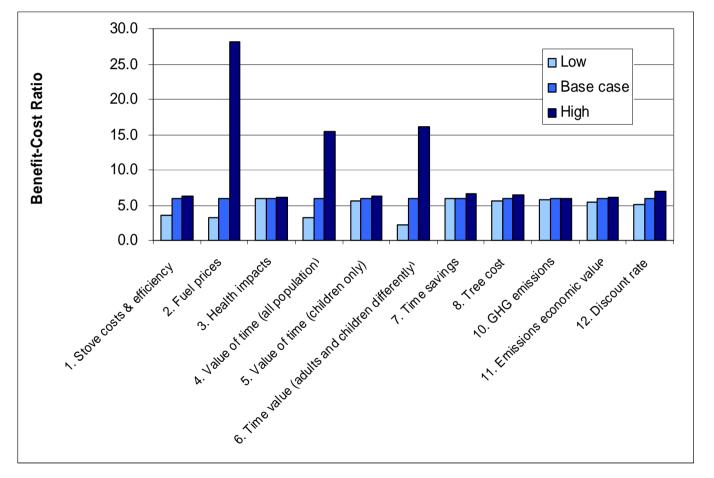

= US\$1,000

DALY


DALY

Benefit-cost ratios: stove

120 Value 100 80 **Productivity** 60 40 & VOSL 20


HELP

Swiss Tropical Institute Institut Tropical Suisse Schweizerisches Tropeninstitut

One-way sensitivity analysis

LPG

Outdoor Air

Suiss

opical

nstitut Tr

The solutions: outdoor air

- Remove pollution at its source e.g. transport
 - Fewer vehicle kilometers traveled
 - Reduce need to travel
 - Switch to public transport or car pooling
 - Less fuel use per vehicle km traveled
 - Lighter vehicles
 - More efficient engine
 - Less pollution per unit of fuel used
 - Switch to cleaner fuel
 - Catalytic converter
- Filtering pollution away from the source (chimneys, re-location)

The solutions: outdoor air

Policy options

opical Suiss

nstitut Tr

- Illegal to use a polluting fuel or substance (e.g. bans on leaded gasoline or asbestos)
- Increase the costs of using polluting fuels (polluter pays principle – fuel tax or road tax)
- Disseminate information on best practices
 - Less polluting technologies
 - Fuel efficiency
 - Changing behaviour

Schweizerisches Tropical Schweizerisches Tropi

Costs and benfits of the solution

- Considerable diversity of studies in literature
 - National versus city-level studies
 - Comprehensive air pollution control versus single regulatory measures
 - Single versus multiple pollutant interventions
 - Industry-wide versus single industry measures
- Interventions presented focus mainly on fuel switching or technological solutions
- Studies mainly from developed countries

1. US Federal Regulations

- National emissions standards for Policy hazardous air pollutants
- Country-wide • Scope
- 1994-2004 • Year
- Cost US\$15 - US\$17 billion annually
- Benefit Health

US\$41 - US\$218 billion annually

2.72 - 13.0 BCR

2. United States EPA Clean Air Act

- Clean Air Act • Policy
- Scope Country-wide
- 1990 2010 • Year
- Cost US\$19 billion annually in 2000 Rising to US\$27 billion annually in 2010
- **Benefit** Health, crop damage, visibility US\$71 billion annually in 2000 Rising to US\$110 billion annually
- 3.8 BCR

3. European clean air targets

- Reductions in emissions to meet air Policy quality targets for CO, heavy metals, ozone, hydrocarbons
- Europe-wide Scope
- Cost Euro 7 billion annually
- Benefit Mortality, morbidity, hospital admissions (from PM and ozone) Euro 42 billion annually
- 6.0 BCR

4. UK Air Quality Strategy review

- Policy 17 policy measures to achieve AQS
- **Scope** Country-wide
- Year 2005 2020
- Cost £374 - £866 million annually
- Benefit Health

£566 - £2021 million annually

0.9 - 3.8• BCR

5. China natural gas project

- **Policy** Substituting natural gas for coal in residential and commercial uses
- Beijing and Chongqing • Scope
- Year 1998 - 2018
- Cost Capital investment – year 0 Beij. 3.5 bn RBM; Chong. 0.7 bn RMB
- **Benefit** Health annual figures Beij. 2.1 bn RBM; Chong. 4.9 bn RMB
- Beij: 6.9 bn RMB; Chong: 18.6 bn RMB NPV
- IRR Beij: 29%; Chong: 75%

6. Shanghai Emission Control

- Policy Emissions control in power and industry
- Scope Shanghai
- 2010-2020 Year
- Cost Power: US\$395 million annually Industry: US\$94 million annually
- Benefit Mortality, morbidity, work days (PM_{10}) Power: US\$417 million annually Industry: US\$266 million annually
- 2.0 (power) and 5.4 (industry) BCR

Suisse

Outdoor air pollution control case studies:

7. Japan sulphur emissions control

- Comparing SO₂ emissions control in 3 Policy policy epochs
- Scope Country-wide
- Year 1968-73; 1974-1983; 1984-93
- (1) 5,576 bn Yen; (2) 15,991 bn Yen Cost (3) 9,354 bn Yen
- **Benefit** Morbidity, work days
 - (1) 30,058 bn Yen; (2) 18,818 bn Yen;
 - (3) 3,854 bn Yen
- (1) 5.39; (2) 1.18; (3) 0.41 BCR

opical Suiss

nstitut

Outdoor air pollution control case studies: Other studies presenting BCRs

- Air pollution reductions in Hungary: **3.0 17.0**
- Emissions reductions in the oil extraction industry in Kazakhstan: 5.7
- Nitric oxide and NO₂ emissions reductions in Tokyo (1974 to 1993): 6.0
- Pollution control programme in Canada: 3.0

- Outdoor air pollution studies estimate mainly health-related costs, omitting
 - Quality of life indicators
 - Material damage and costs of cleaning up
 - >Agricultural production
 - Biodiversity
 - Global environment
- Large uncertainties in health impact estimations
- Economic results highly dependent on valuation techniques – e.g. value of life

Priority setting

Multiple factors influence decision makers

Financing

Cost savings make some interventions attractive

Environmental benefits are externalities

Other issues

Regulations need to be respected (policing costs)

Access to markets and technologies